dr Tomasz D.Gwiazda
 Assistant Professor

 ———————
Home page
Short CV
    Publications
   
(e-)Books
   
Papers
My latest book
Students
Office hours
Teaching
 ———————

Contents of e-Book
Index of authors
Index of experiment domains


Introduction

Standard operators
1-Point Crossover
k-Point Crossover
Shuffle Crossover
Reduced Surrogate Crossover
Uniform Crossover
Highly Disruptive Crossover,Heuristic Uniform Crossover
Average Crossover
Discrete Crossover
Flat Crossover
Heuristic Crossover,Intermediate Crossover
Blend Crossover


Binary coded operators
Random Respectful Crossover
Masked Crossover
1bit Adaptation Crossover
Multivariate Crossover
Homologous Crossover
Count-preserving Crossover
Elitist Crossover
    1bit Adaptation Crossover  
         

 

 

(1BX)

download PDF with first 40 pages
from my latest eBook

if you need more operators click here

Keywords
adaptive
, recombination, combination of crossovers

Motivation
   Obtaining different trajectories of searching the solution space through simultaneous application of two operators of diametrically opposite characteristics.

Source text
   Spears W.M. (1992), Adapting Crossover in Evolutionary Algorithms, Technical Report AIC-92-025, Naval Research Laboratory, Navy Center for Applied Research on Artificial Intelligence.
WEB:     http://www.aic.nrl.navy.mil/~spears/ea.html

Read also
   Vrajitoru D. (2004), Intra and Extra-Generation Schemes for Combining Crossover Operators, in Proceedings of the Fifteenth Midwest Artificial Intelligence and Cognitive Science Conference MAICS 2004, pp. 86-91
WEB:     http://www.maics.us/proceedings.htm

   Herrera F., Lozano M., Sαnchez A.M., Hybrid Crossover Operators for  Real-Coded Genetic Algorithms: An Experimental Study, in Soft Computing - A Fusion of Foundations, Methodologies and Applications, Springer, vol. 9(4), pp. 280-298
WEB:     http://sci2s.ugr.es/publications/

           
http://dx.doi.org/10.1007/s00500-004-0380-9

See also
   k-Point Crossover
   Uniform Crossover
   Combined Balanced Crossover
   Adaptive Strategies of Mixing Crossovers

Algorithm
1.
     select  two parents A(t) and B(t) from current population P(t)

2.     choose a uniform random real number u from interval <0, 1>

3.              if an(t)=bn(t)=1 then

4.              create two offspring  C(t+1)  and D(t+1)  by the 2-Point
             Crossover
as follows:

5.              randomly choose two crossover points cp1 and cp2 from set
             {1,...,n-1} (cp1<cp2)

6.                             for i = 1 to cp1 do

7.                             ci(t+1)=ai(t)  

8.                             di(t+1)=bi(t)

9.                             end do

10.                           for i = cp1 + 1 to cp2 do

11.                           ci(t+1)=bi(t) 

12.                           di(t+1)=ai(t) 

13.                           end do

14.                           for i = cp+ 1 to n do

15.                           ci(t+1)=ai(t)

16.                           di(t+1)=bi(t) 

17.                           end do

18.           else if an(t)=bn(t)=0 then

19.           create two offspring  C(t+1)  and D(t+1)  by the Uniform Crossover
            as
follows:

20.                           for i = 1 to n do

21.                           choose a uniform random real number u from
                            interval
<0,1>

22.                                           if u ≤ ps then (swap bits)

23.                                           ci(t+1)=bi(t)     

24.                                           di(t+1)=ai(t)  

25.                                           else (don’t swap)

26.                                           ci(t+1)=ai(t)  

27.                                           di(t+1)=bi(t) 

28.                                           end if

29.                           end do

30.           else

31.           choose a uniform random real number u from interval <0, 1>

32.                           if u <  0.5  then

33.                           create two offspring  C(t+1)  and D(t+1)  by the
                           Uniform Crossover as
follows:

34.                                           for i = 1 to n do

35.                                           choose a uniform random real number
                                            u from interval
<0,1>

36.                                                          if u ps then (swap bits)

37.                                                          ci(t+1)=bi(t)    

38.                                                          di(t+1)=ai(t)      

39.                                                          else (don’t swap)

40.                                                          ci(t+1)=ai(t)      

41.                                                          di(t+1)=bi(t)  

42.                                                          end if

43.                                           end do

44.                           else

45.                           create two offspring  C(t+1)  and D(t+1)  by the
                           2-Point Crossover as follows:

46.                           randomly choose two crossover points cp1 and cp2
                                
 from set {1,...,n-1} (cp1<cp2)
  

47.                                           for i = 1 to cp1 do

48.                                           ci(t+1)=ai(t)   

49.                                           di(t+1)=bi(t)   

50.                                           end do

51.                                           for i = cp1 + 1 to cp2 do

52.                                           ci(t+1)=bi(t)  

53.                                           di(t+1)=ai(t)    

54.                                           end do

55.                                           for i = cp+ 1 to n do

56.                                           ci(t+1)=ai(t)     

57.                                           di(t+1)=bi(t)   

58.                                           end do

59.                           end if

60.           end if

where:
 
ps – probability of swapping, in standard form ps = 0.5

Comments
   In the 1BX method the last bit of the solution vector is reserved for the code of one of the two of the applied crossover operators. Assuming that “0” corresponds with the Uniform Crossover (UX) operator and “1” corresponds with the 2-Point Crossover (2-PX) operator, the choice of one of them is made according to the rule: if the last bit of the parents is off the same value (rows: 3 and 18) then choose the operator indicated by this bit (rows: 4 and 19). Otherwise choose the operator through selection by a draw (rows: 32 and 44).
   Application of the described crossover scheme combines the choice of the operator with the solution vector. Moreover, this choice is carried out separately for each parent pair; hence this scheme is called local adaptation. Global adaptation version has been also presented, but as it was emphasized by the author, significantly worse results were obtained by its application. 

Experiment domains
   n-peak problems

Compared to
   k-Point Crossover
   Uniform Crossover

 
   

    :: Copyrights © tomaszgwiazda e-books 2006 :: webmaster ::