Crossover Operators
Contents
Introduction Part I Basic methods 1. Methods based on penalty function 1.1 Static penalty 1.2 Dynamic penalty 1.3 Annealing penalty - GENOCOP II 1.4 Adaptive penalty 1.5 Self-adaptive penalty 1.6 Death penalty 1.7 Admissibility based penalty 1.8 Divided penalty 1.9 ASCHEA 2. Decoders 3. Repair algorithms 4. Constraints separation 4.1 Co-evolution 4.1.1 Paredis’ algorithm 4.1.2 Gwiazda’s first method 4.2 Feasible solutions domination 4.3 Multi-criteria optimization 4.3.1 COMOGA 4.3.2 Pareto’s scheme 4.3.3 Min-Max 4.3.4 Coello’s first method 4.3.5 Coello’s second method 4.4 Behavioral memory 4.5 CONGA 5. Dedicated representation and dedicated operators 5.1 GENOCOP I 5.2 Exploring a border between feasible and unfeasible solutions 5.3 Logarithmic mutation operator 5.4 Stochastic ranking 5.5 Full crossover – Gwiazda’s second method Part II Test generators 1. Test generator - TCG 2. Michalewicz’s tests 3. Gwiazda’s tests 4. Test generator - TCG2 5. Tests on problems generated by TCG2 Part III Transportation problem 1. Problem 2. Methods 2.1 DONLP2 2.2 GAMS 2.3 GENETIC-2 2.4 Full crossover 3. Results 3.1 G1-G11 test set 3.2 Balanced nonlinear transportation problem Conclusions Figures Tables Listings References Appendix A
:: Copyrights © tomaszgwiazda e-books 2006 :: webmaster ::