dr Tomasz D.Gwiazda
 Assistant Professor

 ———————
Home page
Short CV
    Publications
   
(e-)Books
   
Papers
My latest book
Students
Office hours
Teaching
 ———————

Contents of e-Book
Index of authors
Index of experiment domains


Introduction

Standard operators
1-Point Crossover
k-Point Crossover
Shuffle Crossover
Reduced Surrogate Crossover
Uniform Crossover
Highly Disruptive Crossover,Heuristic Uniform Crossover
Average Crossover
Discrete Crossover
Flat Crossover
Heuristic Crossover,Intermediate Crossover
Blend Crossover


Binary coded operators
Random Respectful Crossover
Masked Crossover
1bit Adaptation Crossover
Multivariate Crossover
Homologous Crossover
Count-preserving Crossover
Elitist Crossover
    Heuristic Crossover  
         

 

 

- Intermediate Crossover
             (HC/IC)

download PDF with first 40 pages
from my latest eBook

if you need more operators click here

Read also
Voigt H.-M. , Mühlenbein H. , (1995), Cvetkoviæ D. , Fuzzy recombination for the Breeder Genetic Algorithm, in Proceedings of the Sixth International Conference on Genetic Algorithms, Morgan Kaufman, pp. 104-111
WEB:    
http://citeseer.ifi.unizh.ch/voigt95fuzzy.html

           
http://citeseer.ist.psu.edu/voigt95fuzzy.html
            http://www.amspr.gfai.de/publications_de.htm

●   Mühlenbein H. , Schlierkamp-Voosen D.  (1993), Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization, in Evolutionary Computation, vol. 1, pp. 25-49
WEB:    
http://citeseer.ifi.unizh.ch/mtihlenbein93predictive.html
           
http://citeseer.ist.psu.edu/mtihlenbein93predictive.html
           
http://www.ais.fhg.de/~muehlen/pegasus/publications.html

●   Herrera F. , Lozano M. , Verdegay J.L.  (1998), Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis, in Artificial Intelligence Review, Kluwer, vol. 12, pp. 254-319
WEB:    
http://citeseer.ifi.unizh.ch/herrera98tackling.html
           
http://citeseer.ist.psu.edu/herrera98tackling.html

Algorithm
1.
     select two parents X(t) and Y(t) from a parent pool

2.     create one offspring  X(t+1)  as follows:

3.              for i = 1 to n do

4.              assume that xi(t)yi(t)

5.              choose a uniform random real number w from interval <0,1>

6.              xi(t+1)=xi(t)+w(yi(t)-xi(t))

7.              end do  

Comments
Parameter
w may be of constant value equal to 0.5 or may be selected by a draw from interval <0,1> (row: 5).

 
   

    :: Copyrights © tomaszgwiazda e-books 2006 :: webmaster ::